On a hidden dynamical $\operatorname{SU}(3)$-symmetry in parasupersymmetric quantum mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L853
(http://iopscience.iop.org/0305-4470/26/17/017)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:30

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On a hidden dynamical $\operatorname{SU}(3)$-symmetry in parasupersymmetric quantum mechanics

J Beckers, \dagger N Debergh $\dagger \S$ and A G Nikitin \ddagger
\dagger Theoretical and Mathematical Physics, Institute of Physics, B. 5, University of Liège, B-4000 Liege 1, Belgium
\ddagger Institute of Mathematics, Academy of Sciences, Repin Street, 3, Kiev 4, Ukraine

Received 13 April 1993

Abstract

The superposition of bosons and $p=2$-parafermions has led to the so-called parasupersymmetric quantum mechanics. We show that the structures subtending these developments contain a hidden dynamical $\operatorname{SU}(3)$-symmetry effectively associated with the fundamental irreducible representation $\underline{3}$ (unitarily equivalent to the Gell-Mann one). The representation 3^{*} is also visited. The generalization to arbitrary orders p of paraquantization is briefly discussed.

$N=2$-parasupersymmetric quantum mechanics dealing with bosons and $p=$ 2-parafermions $[1,2]$ has essentially been developed through two different approaches, respectively presented in the Rubakov-Spiridonov [3] and Beckers-Debergh [4] papers. Let us recall that N is the fixed number of charges leading to the corresponding Hamiltonian while p is the order of paraquantization.

Physically, these approaches are generalizations of the Witten supersymmetric model [5] concerned with bosons and ($p=1$)-fermions and they correspond to the non-equivalent Ξ - and Λ-types of three-level systems respectively [6].

Algebraically, the two (parasuper) structures subtending the above developments are fundamentally different: they lead to non-equivalent Hamiltonians included into sets of trilinear relations amongst the parasupercharges [7].

Here we want to point out that the two approaches are characterized by the same representation of the dynamical $\mathrm{SU}(3)$-symmetry besides their typical non-equivalent parasuperhamiltonians.

In order to show the existence of such a hidden $\mathrm{SU}(3)$-symmetry, let us restrict ourselves to oscillator-like interactions (for simplicity, but the arguments hold for arbitrary superpotentials $W_{1}(x)$ and $W_{2}(x)$. Moreover, let us decompose the two respective original parasupercharges Q and Q^{\dagger} into the four simplest odd charges that we call $Q_{k}^{ \pm}(k=1,2)$ or $q_{k}^{ \pm}(k=1,2)$ in the Rubakov-Spiridonov or Beckers-Debergh developments respectively. These building charges are simple odd 3 by 3 matrices containing only one annihilation (a) or creation (a^{\dagger}) bosonic operators. Moreover
they are symmetries of (i.e. commute with) the corresponding Hamiltonian. They are given by the following explicit forms in the Rubakov-Spiridonov context [3]:

$$
\begin{equation*}
Q_{1}^{+}=a e_{1,2} \quad Q_{1}^{-}=a^{\dagger} e_{2,1} . \quad Q_{2}^{+}=a^{\dagger} e_{3,2} \quad Q_{2}^{-}=a e_{2,3} \tag{1}
\end{equation*}
$$

and they lead to the parasuperhamiltonian

$$
\begin{equation*}
H_{R S}=\left(a a^{\dagger}+\frac{1}{2}\right) e_{1,1}+\left(a^{\dagger} a+\frac{1}{2}\right) e_{2,2}+\left(a a^{\dagger}-\frac{3}{2}\right) e_{3,3} \tag{2}
\end{equation*}
$$

where the $e_{j, k}$'s are evidently 3 by 3 matrices with all zero elements except those located at the intersection of the j th line and the k th column which are equal to unity. In the Beckers-Debergh context [4], we have the corresponding information in the forms

$$
\begin{equation*}
q_{1}^{+}=a e_{1,2} \quad q_{1}^{-}=a^{\dagger} e_{2,1} \quad q_{2}^{+}=a e_{3,2} \quad q_{2}^{-}=a^{\dagger} e_{2,3} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{\mathrm{BD}}=a a^{\dagger}\left(e_{1,1}+e_{3,3}\right)+a^{\dagger} a e_{2,2} . \tag{4}
\end{equation*}
$$

The characteristics $[(1)$, (2)] and [(3), (4)] can now be compared in a non-trivial way. As a starting point, let us search for information on the algebraic structure generated by the matrices (3) and (4) for example. By defining the four new (even) operators

$$
\begin{equation*}
\left[q_{k}^{+}, q_{k}^{-}\right]=Z_{k} \quad(k=1,2) \quad\left[q_{1}^{+}, q_{2}^{-}\right]=Z_{3} \quad\left[q_{1}^{-}, q_{2}^{+}\right]=Z_{4} \tag{5}
\end{equation*}
$$

it is easy to get the non-zero commutation relations (without summation on repeated indices):

$$
\begin{array}{lll}
{\left[Z_{k}, q_{k}^{+}\right]= \pm 2 h_{\mathrm{BD}} q_{k}^{ \pm}} & {\left[Z_{k}, q_{j}^{ \pm}\right]= \pm h_{\mathrm{BD}} q_{j}^{ \pm}} & (k \neq j) \\
{\left[Z_{3}, q_{1}^{-}\right]=-h_{\mathrm{BD}} q_{2}^{-}} & {\left[Z_{3}, q_{2}^{+}\right]=h_{\mathrm{BD}} q_{1}^{+}} \\
{\left[Z_{4}, q_{1}^{+}\right]=-h_{\mathrm{BD}} q_{2}^{+}} & {\left[Z_{4}, q_{2}^{-}\right]=h_{\mathrm{BD}} q_{1}^{-}} \\
{\left[Z_{1}, Z_{3}\right]=\left[Z_{3}, Z_{2}\right]=h_{\mathrm{BD}} Z_{3}} & {\left[Z_{2}, Z_{4}\right]=\left[Z_{4}, Z_{1}\right]=h_{\mathrm{BD}} Z_{4} .} \tag{6}
\end{array}
$$

We are thus dealing, in (5) and (6), with eight operators $\left\{q_{k}^{ \pm}, Z_{a}(\alpha=1,2,3,4)\right\}$ which commute with the parasuperhamiltonian h_{BD}. Such results immediately lead to the existence of dynamical symmetries [8], some of them leading to the explanation of specific degeneracies such as accidental ones. These symmetries generate a closed structure appearing as a simple Lie algebra if we restrict ourselves to subspaces of the original Hilbert space corresponding to eigenvalues E of the parasuperhamiltonian under study. By defining the new generators

$$
\begin{equation*}
q_{k}^{ \pm}{ }^{\prime}=\frac{1}{\sqrt{E}} q_{k}^{ \pm} \quad Z_{\alpha}^{\prime}=\frac{1}{E} Z_{a} \tag{7}
\end{equation*}
$$

the structure relations (5) and (6) fall into the following categories of commutators

$$
\begin{equation*}
\left[Z^{\prime}, Z^{\prime}\right] \approx Z^{\prime} \quad\left[q^{\prime}, q^{\prime}\right] \approx Z^{\prime} \quad\left[Z^{\prime}, q^{\prime}\right] \approx q^{\prime} \tag{8}
\end{equation*}
$$

characterizing those of the simple Lie algebra $s u(3, \mathbb{C})$. In order to convince ourselves of this result, let us act with these operators on a basis of oscillator-like vectors which are such that as usual

$$
\begin{equation*}
a|n\rangle=\sqrt{n}|n-1\rangle \quad a^{\dagger}|n\rangle=\sqrt{n+1}|n+\overline{1}\rangle . \tag{9}
\end{equation*}
$$

By dealing with the following linear combinations

$$
\begin{array}{lll}
F_{1}=\frac{i}{2}\left(Z_{3}^{\prime}+Z_{4}^{\prime}\right) & F_{2}=\frac{1}{2}\left(Z_{3}^{\prime}-Z_{4}^{\prime}\right) & F_{3}=\frac{1}{2}\left(Z_{1}^{\prime}-Z_{2}^{\prime}\right) \\
F_{4}=\frac{1}{2}\left(q_{1}^{+\prime}+q_{1}^{-\prime}\right) & F_{5}=-\frac{i}{2}\left(q_{1}^{+\prime}-q_{1}^{-\prime}\right) & F_{6}=-\frac{i}{2}\left(q_{2}^{+\prime}-q_{2}^{-\prime}\right) \\
F_{7}=-\frac{1}{2}\left(q_{2}^{+\prime}+q_{2}^{-\prime}\right) & F_{8}=-\frac{1}{2 \sqrt{3}}\left(Z_{1}^{\prime}+Z_{2}^{\prime}\right) \tag{11}
\end{array}
$$

we immediately recover the structure relations of the F-spin [9]. Here we stress the two diagonal operators F_{3} and F_{8} as well as the operators (10) which generate a particular $s u(2, \mathbb{C})$-subalgebra.

At this stage, it can be seen that we have in fact obtained a realization of the fundamental representation $\underline{3}$ of $s u(3, \mathbb{C})$ which is unitarily equivalent through the following transformation

$$
\begin{equation*}
U=e_{1,1}+i e_{2,3}+e_{3,2} \quad U^{j}=U^{-1} \tag{12}
\end{equation*}
$$

to the one given by Gell-Mann [9].
Completely parallel developments can also be realized from the Rubakov-Spiridonov characteristics [(1), (2)] but leading in correspondence with (7) to the (eight) generators
$\begin{array}{ll}q_{1}^{ \pm \prime}=\frac{1}{\sqrt{E-\frac{1}{2}}} Q_{1}^{ \pm} & q_{2}^{ \pm \prime}=\frac{1}{\sqrt{E+\frac{1}{2}}} Q_{2}^{ \pm} \quad Z_{1}^{\prime}=\frac{1}{E-\frac{1}{2}}\left[Q_{1}^{+}, Q_{1}^{-}\right] \\ Z_{2}^{\prime}=\frac{1}{E+\frac{1}{2}}\left[Q_{2}^{+}, Q_{2}^{-}\right] & Z_{3}^{\prime}=\frac{1}{E^{2}-\frac{1}{4}}\left[Q_{1}^{+}, Q_{2}^{-}\right] \quad: Z_{4}^{\prime}=\frac{1}{E^{2}-\frac{1}{4}}\left[Q_{1}^{-}, Q_{2}^{+}\right] .\end{array}$
Their commutation relations of the type (8) lead once again to a realization of the fundamental representation 3 of $s u(3, \mathbb{C})$ as it can be verified.

Up to the specific forms of the parasuperhamiltonian $H_{P S S}$ given by (2) or (4), we conclude that the same representation of the dynamical algebra $s u(3, \mathbb{C})$ is present in both approaches of $N=2$-parasupersymmetric quantum mechanics describing bosons and $p=2$-parafermions. The complete structure generated by the nine operators is finally the direct sum

$$
\begin{equation*}
H_{\mathrm{PSS}} \oplus s u(3, \mathbb{C}) \tag{14}
\end{equation*}
$$

in the fundamental (irreducible and unitary) representation 3.
Let us now end this letter with some comments.
First, we want to point out once again that the above $s u(3, \mathbb{C})$-symmetry could play an analogous role to the so(4)-symmetry in the study of the hydrogen atom [8] where we remember that the time-independent Hamiltonian also commutes with all the other (six) operators, i.e. the orbital momentum and the Runge-Lenz vector. These examples are two typical applications requiring the determination of the symmetry Lie algebra for a Hamiltonian with accidental degeneracy [10]. Consequently, the four steps of the procedure proposed by Moshinsky et al [10] can be considered in the above parasupersymmetric context(s) in order to explain the (triple) degeneracies of the energy eigenvalues. In that way we can show that the above $s u(3, \mathbb{C})$-symmetry is, in fact, too large for explaining these degeneracies: one of its $s u(2, \mathbb{C})$-subalgebras [11]
is already sufficient. The ladder operators are nothing else than the original parasupercharges Q and Q^{\dagger} as previously understood [4], so that we get only one Z-operator in the line of (5): it is then easy to see that Q, Q^{\dagger} and Z generate a $s u(2, \mathbb{C})$-subalgebra which is effectively the symmetry algebra explaining the (triple) accidental degeneracies in the parasuperspectrum. Consequently, the above $s u(3, \mathbb{C})$ symmetry also enhances additional properties with respect to the minimal $s u(2, \mathbb{C})$ one. Let us end this first comment by noticing that the fourth step of the Moshinsky et al procedure [10] is always satisfied in our considerations: we effectively have that

$$
\begin{equation*}
H^{2}=\frac{1}{2} J^{2} \quad H^{6}=\frac{81}{9400}\left(C_{1}^{3}+C_{2}^{2}\right) \tag{15}
\end{equation*}
$$

where J^{2} is the usual Casimir operator of $s u(2, \mathbb{C})$ while C_{1} and C_{2} are the Casimir ; operators of $s u(3, \mathbb{C})$ given by

$$
\begin{equation*}
C_{1}=\sum_{i=1}^{8} F_{i}^{2} \quad C_{2}=\sum_{i, j, k=1}^{8} d_{i j k} F_{i} F_{j} F_{k} \tag{16}
\end{equation*}
$$

the $d_{i j k}$'s being the symmetric structure constants [9] of $s u(3, \mathbb{C})$.
Secondly, we have to understand that the way of constructing the operators (5) is simply related to the reduction of trilinear relations into bilinear ones [11] in order to get quadratic Sklyanin algebras [12] from Lie parasuperalgebras [13]. Indeed, we notice that the algebra quoted in eqs. (6) is nothing else than a quadratic algebra equivalent to the Lie parasuperalgebra subtending our approach [4] of parasupersymmetric quantum mechanics.

Thirdly, due to the fact that our results are enhancing the fundamental representation 3 of $s u(3, \mathbb{C})$, we can ask if it is not possible to exploit the other (nonequivalent) fundamental representation 3^{*} of $s u(3, \mathbb{C})$, in order to develop a new form of parasupersymmetric quantum mechanics. The answer is negative: it can be shown that the 3 - and 3^{*}-characteristics are, in our developments, simply related to each other by the only interchange of the so-called type- $Q^{-}\left(\equiv \bar{q}_{1}^{-}+q_{2}^{*}\right)$ and type- P ($\equiv q_{2}^{+}-q_{1}^{-}$) parasupercharges defined elsewhere [13]. Such an interchange does not modify the physical context.

Fourthly, we recall that parasupersymmetry has to include supersymmetry, so that we can also ask for dynamical symmetries in the $p=1$-context. Here, the type P-supercharges do not exist in accordance with the fact that we get only two q 's and only one Z (cf. (3) and (5)) besides the superhamiltonian $H_{\text {ss }}$. The Lie algebra subtending the dynamical supersymmetries is thus $s u(2, \mathbb{C})$, so that, in correspondence with the structure (14), we have here

$$
\begin{equation*}
H_{s s} \oplus s u(2, \mathbb{C}) \tag{17}
\end{equation*}
$$

Let us notice that $s u(2, \mathbb{C})$ admits only one fundamental representation $\left(2 \equiv \underline{2}^{*}\right)$ and that the three symmetries are dynamical ones entering in the understanding of the degeneracies of the superspectrum [5]. This Lie algebra $\operatorname{su}(2, \mathbb{C})$ is precisely the one which is also necessary in the $p=2$-context, where it appears as a subalgebra of $s u(3, \mathbb{C})$ as discussed in the first comment.

Finally, let us conclude by mentioning that the above results can be extended to arbitrary orders p of paraquantization: the dynamical symmetry is then characterized by $\left[(p+1)^{2}-1\right]$ generators leading systematically to the simple Lie algebra
$s u(p+1, \mathbb{C})$. In each p-context, the subalgebra $s u(2, \mathbb{C}) \subset s u(p+1, \mathbb{C})$ plays the main role as a part of the dynamical algebra explaining completely the degree $(p+1)$ of degeneracy of the energy eigenvalues contained in the associated parasuperspectrum. Such an argument is in complete agreement with the use of the ($p+1$)-dimensional representations $D^{(p / 2)}$ of $s u(2, \mathbb{C})$ required by the parafermionic variables [2].

One of us (AGN) wants to thank the Belgian Interuniversitary Institute for Nuclear Sciences (IISN) for financial support during his stay in Liège in December 1992.

References

[1] Green H S 1953 Phys. Rev. 90270
Greenberg O W and Messiah A M L 1965 Phys. Rev. B 1381155
[2] Ohnuki Y and Kamefuchi \$ 1982 Quantum Field Theory and Parastatistics (Tokyo: University of Tokyo Press)
[3] Rubakov V A and Spiridonov V P 1988 Mod. Phys. Lett. A 31337
[4] Beckers J and Debergh N 1990 Nucl. Phys. B 340767
[5] Witten E 1981 Nucl. Phys. B 188513.
[6] Yoo H I and Eberly J H 1985 Phys. Rep. 118241 Semenov V V and Chumakov S M 1991 Phys. Lett. 262B 451
[7] Beckers J and Debergh N 1991 Lecture Notes in Physics 382 (Berlin: Springer) 414
[8] Greiner W and Müller B 1989 Quantum Mechanics-Symmetries (Berlin: Springer) Shankar R 1980 Principles of Quantum Mechanics (New York: Plenum)
Baym G 1969 Lectures on Quantum Mechanics (New York: Benjamin)
[9] Gell-Mann M and Ne'eman Y 1964 The Eightfold Way, Frontiers in Physics (New York: Benjamin)
[10] Moshinsky M, Quesne C and Loyola G 1990 Ann. Phys., NY 198103
[11] Beckers J and Debergh N 1992 On Quantum Deformations of the Simplest Lie parasuperalgebra Preprint PTM-92/21, University of Liège
\{12] Sklyanin E K 1982 Funkt. Anal. Pril. 16 27; 1983 Funkt. Anal. Pril 16 263; 1983 Funkt. Anal. Pril. 17 34; 1984 Funkt. Anal. Pril 17273
[13] Beckers J and Debergh N 1990 J. Phys. A: Math. Gen. 23 L751S, L1073

